Math, asked by Rajendragadhwal3348, 10 months ago

Find the value of k for which the quadratic equation (k-12)x^2+2(k-12)x+2=0 has equal roots

Answers

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=12\:and\:14}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies (k-12)x^{2} +2(k-12)x + 2 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies ( k-12)x^{2} +2( k - 12)x + 2 = 0} \\   \\   \tt{\circ  \: a = (k-12)} \\\\   \tt{\circ \: b = 2(k -12 )}\\ \\\tt{\circ \:c = 2}\\   \\ \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (2k -24)^{2}  -  4 \times( k -12) \times 2 = 0 } \\  \\    \tt{: \implies \:  4{k}^{2}  + 576-96k - 8k  + 96= 0 } \\  \\  \tt{ : \implies \:  4 {k}^{2}   -104k+672  = 0 } \\  \\  \text{Solving \: quadratic \: by \: middle \: term \: spliting \: method}  \\ \tt{ :  \implies  {k}^{2}  - 26k +168  = 0} \\  \\   \tt{: \implies (k-14)(k-12)= 0} \\  \\   \tt{: \implies k  =14\:and\:12} \\  \\   \green{\tt{: \therefore k = 12 \: and \: 14}}

Similar questions