Math, asked by Muskangotter, 1 year ago

find the value of k for which the quadratic equation( K - 2) X square + 2 (2 k - 3 ) X +(5 K - 6 )equal to zero has equal roots​

Answers

Answered by prakruthi2003
2

here is the answer

mark me as brainliest

Attachments:
Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Value\:of\:k=1\:and\:3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies (k - 2)x^{2}  +2(2k -3)x + (5k-6) = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies (k - 2)x^{2}  +2(2k - 3)x + (5k-6) = 0} \\   \\   \tt{\circ  \: a = (k -2)} \\ \\  \tt{\circ \: b = 2(2k -3)}\\ \\\tt{\circ \:c = (5k-6)}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (4k -6)^{2}  -  4 \times( k - 2) \times (5k-6) = 0 } \\  \\    \tt{: \implies \:  16{k}^{2}  + 36-48k - 20k^{2} +64k -48= 0 } \\  \\  \tt{ : \implies \:   4{k}^{2} -16k +12 = 0 } \\  \\  \text{Solving \: quadratic \: by \: middle \: term \: spliting \: method}  \\ \tt{ :  \implies  {k}^{2}  - 4k  + 3= 0} \\  \\   \tt{: \implies k(k - 3) - 1(k - 3) = 0} \\  \\   \tt{: \implies (k - 1)(k - 3) = 0} \\  \\   \green{\tt{: \implies k = 1 \: and \: 3}}

Similar questions