Math, asked by pavan5488, 1 year ago

Find the value of k for which the quadratic equation k^2x^2-2[k-1]x+4=0 has real and equal roots

Answers

Answered by Khushwant23
0
Hope you will get the answer from the attachment
Attachments:
Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\frac{1}{3}\:and\:-1}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies k^{2}x^{2}  -2(k-1)x + 4= 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies k^{2}x^{2}  -2( k - 1)x + 4 = 0} \\   \\   \tt{\circ  \: a = k^{2}} \\\\   \tt{\circ \: b = -2(k -1)}\\ \\\tt{\circ \:c = 4}\\   \\ \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (-(2k -2))^{2}  -  4 \times k^{2} \times 4= 0 } \\  \\    \tt{: \implies \:  4{k}^{2}  + 4-8k - 16k^{2} = 0 } \\  \\  \tt{ : \implies \:   12{k}^{2}   +8k -4 = 0 } \\  \\  \text{Solving \: quadratic \: by \: middle \: term \: spliting \: method}  \\ \tt{ :  \implies  3{k}^{2} +2 -1   = 0} \\  \\   \tt{: \implies 3k^{2}+3k-k-1= 0} \\  \\   \tt{: \implies (3k-1)(k+1)=0} \\  \\   \green{\tt{: \therefore k = \frac{1}{3} \: and \: -1}}

Similar questions