Math, asked by sunitafd2002, 11 months ago

find the value of k for which the quadratic equation( K + 4)x square+(k+1) x+1=0 has equal roots​

Answers

Answered by samruddhisharma363
3

Answer:

Equal roots means

D = 0

D = b^2 - 4ac =0

 = (k + 1) {}^{2}  - 4(k + 4)(1) \\ k {}^{2}  + 2k + 1 - 4k - 16 = 0 \\ k {}^{2}  - 2k - 15 = 0

by splitting the middle term

k {}^{2}  - 5k  + 3k  - 15 = 0 \\ k(k - 5) + 3(k - 5) = 0 \\ k - 5 = 0 \:  \:  \:  \:  \: k  + 3 = 0 \\ k = 5 \: and \: k =  - 3

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Value\:of\:k=5\:and\:-3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies (k +4)x^{2}  +( k+1)x + 1 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies ( k+4)x^{2}  +( k +1)x + 1= 0} \\   \\   \tt{\circ  \: a = (k +4)} \\\\   \tt{\circ \: b = (k +1)}\\\\ \tt{\circ \:c = 1}\\    \\\bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (k +1)^{2}  -  4 \times( k+4) \times 1 = 0 } \\  \\    \tt{: \implies \:  {k}^{2}  + 1+2k - 4k  -16 = 0 } \\  \\  \tt{ : \implies \:   {k}^{2}   - 2k -15= 0 } \\  \\  \text{Solving \: quadratic \: by \: middle \: term \: spliting \: method}  \\ \tt{ :  \implies  {k}^{2}  - 5k +3k  -15  = 0} \\  \\   \tt{: \implies k(k - 5) +3(k - 5) = 0} \\  \\   \tt{: \implies (k +3)(k -5) = 0} \\  \\   \green{\tt{: \implies k = 5 \: and \: -3}}

Similar questions