Math, asked by amgill003pca1jo, 1 year ago

find the value of k for which the quadratic equation (k+9)x^2-2(k-3)x+1=0 has equal roots

Answers

Answered by PriyankaKiran29
1

This is your answer:

Attachments:
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=0\:and\:7}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies (k+9)x^{2}  -2(k-3)x + 1 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies ( k+9)x^{2}  -2( k - 3)x + 1 = 0} \\   \\   \tt{\circ  \: a = (k+9)} \\\\   \tt{\circ \: b = -2(k -3 )}\\ \\\tt{\circ \:c = 1}\\   \\ \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (-(2k -6))^{2}  -  4 \times( k +9) \times 1 = 0 } \\  \\    \tt{: \implies \:  4{k}^{2}  + 36-24k - 4k  - 36 = 0 } \\  \\  \tt{ : \implies \:   4{k}^{2}   - 28k  = 0 } \\  \\  \text{Solving \: quadratic \: by \: middle \: term \: spliting \: method}  \\ \tt{ :  \implies  {k}^{2}  - 7k   = 0} \\  \\   \tt{: \implies k(k - 7)= 0} \\  \\   \tt{: \implies k  = 0\:and\:7} \\  \\   \green{\tt{: \therefore k = 0 \: and \: 7}}

Similar questions