Math, asked by Namnami, 1 month ago

find the value of 'k' for which the roots 2x²+kx+8=0 are real and equal​

Answers

Answered by rudrarajsingh887
0

Answer:

Given:

The roots of the quadratic equation 2x² + kx + 8 = 0 will have equal value.

\bf{\red{\underline{\bf{To\:find\::}}}}

Tofind:

The value of k.

\bf{\red{\underline{\bf{Explanation\::}}}}

Explanation:

We have 2x² + kx + 8 = 0

A/q

Discriminate (D) = 0

a = 2

b = k

c = 8

Formula use :

\boxed{\bf{b^{2}-4ac=0}}}

\begin{gathered}\longrightarrow\sf{b^{2} -4ac=0}\\\\\longrightarrow\sf{(k)^{2} -4\times 2\times 8=0}\\\\\longrightarrow\sf{(k)^{2} -64=0}\\\\\longrightarrow\sf{(k)^{2} =64}\\\\\longrightarrow\sf{k=\pm\sqrt{64} }\\\\\longrightarrow\sf{\green{k=\pm8}}\end{gathered}

⟶b

2

−4ac=0

⟶(k)

2

−4×2×8=0

⟶(k)

2

−64=0

⟶(k)

2

=64

⟶k=±

64

⟶k=±8

Thus;

The value of k is ±8 .

Step-by-step explanation:

mark as brain list

Similar questions