find the value of 'k' for which the roots 2x²+kx+8=0 are real and equal
Answers
Answered by
0
Answer:
Given:
The roots of the quadratic equation 2x² + kx + 8 = 0 will have equal value.
\bf{\red{\underline{\bf{To\:find\::}}}}
Tofind:
The value of k.
\bf{\red{\underline{\bf{Explanation\::}}}}
Explanation:
We have 2x² + kx + 8 = 0
A/q
Discriminate (D) = 0
a = 2
b = k
c = 8
Formula use :
\boxed{\bf{b^{2}-4ac=0}}}
\begin{gathered}\longrightarrow\sf{b^{2} -4ac=0}\\\\\longrightarrow\sf{(k)^{2} -4\times 2\times 8=0}\\\\\longrightarrow\sf{(k)^{2} -64=0}\\\\\longrightarrow\sf{(k)^{2} =64}\\\\\longrightarrow\sf{k=\pm\sqrt{64} }\\\\\longrightarrow\sf{\green{k=\pm8}}\end{gathered}
⟶b
2
−4ac=0
⟶(k)
2
−4×2×8=0
⟶(k)
2
−64=0
⟶(k)
2
=64
⟶k=±
64
⟶k=±8
Thus;
The value of k is ±8 .
Step-by-step explanation:
mark as brain list
Similar questions