Math, asked by ksrigowri2020, 9 months ago

find the value of'k' for which the roots are real and equal
4x2-2(k+1)X+(k+1)=0​

Answers

Answered by wwwshobhakeerthi50
0

Answer:

4

Step-by-step explanation:

use discriminant formula for finding the value of k

Attachments:
Answered by Anonymous
2

Answer:

\sf{The \ value \ of \ k \ is \ 1+\sqrt3 \ or}

\sf{1-\sqrt3.}

Given:

\sf{The \ given \ equation \ is}

\sf{4x^{2}-2(k+1)x+(k+1)=0}

\sf{The \ equation \ has \ real \ and \ equal \ roots.}

To find:

\sf{The \ value \ ok \ k.}

Solution:

\sf{The \ given \ equation \ is}

\sf{4x^{2}-2(k+1)x+(k+1)=0}

\sf{Here, \ a=4, \ b=-2(k+1) \ and \ c=k+1}

\sf{If \ the \ equation \ has \ real \ and \ equal \ roots}

\sf{b^{2}-4ac=0}

\sf{[-2(k+1)]^{2}-4(4)(k+1)=0}

\sf{\leadsto{4(k+1)^{2}-16(k+1)=0}}

\sf{\leadsto{4(k^{2}+2k+1)-16k-16=0}}

\sf{\leadsto{4k^{2}+8k+8-16k-16=0}}

\sf{\leadsto{4k^{2}-8k-8=0}}

\sf{\leadsto{4(k^{2}-2k-2)=0}}

\sf{\leadsto{k^{2}-2k-2=0}}

\sf{Here, \ a=1, \ b=-2 \ and \ c=-2}

\sf{Now, \ b^{2}-4ac=(-2)^{2}-4(1)(-2)}

\sf{\therefore{b^{2}-4ac=4+8}}

\sf{\therefore{b^{2}-4ac=12}}

\sf{By \ quadratic \ formula}

\sf{\leadsto{k=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}}

\sf{\leadsto{k=\dfrac{2\pm\sqrt{12}}{2}}}

\sf{\leadsto{k=\dfrac{2\pm2\sqrt3}{2}}}

\sf{\leadsto{k=1\pm\sqrt3}}

\sf\purple{\tt{\therefore{The \ value \ of \ k \ is \ 1+\sqrt3 \ or}}}

\sf\purple{\tt{1-\sqrt3.}}

Similar questions