Math, asked by sheeshrambjr, 7 months ago

find the value of K for which the roots of the equation 8k x(x-1)+1=0​

Answers

Answered by umapainuly3
0

Step-by-step explanation:

Givenarrow8kx(x−1)+1=0

\begin{gathered}\textsf{Now,} \\ \\ \mathsf{\implies 8kx (x \: - \: 1) \: + \: 1 \: = \: 0} \\ \\ \mathsf{\implies 8k{x}^{2} \: - \: 8kx \: + \: 1 \: = \: 0} \\ \\ \mathsf{Here,} \\ \\ \mathsf{\longrightarrow Coefficient \: of \: {x}^{2}(a) \: = \: 8k} \\ \\ \mathsf{\longrightarrow Coefficient \: of \: {x}(b) \: = \: -8k} \\ \\ \mathsf{\longrightarrow Constant \: term(c) \: = \: 1}\end{gathered}

Now,

⟹8kx(x−1)+1=0

⟹8kx

2

−8kx+1=0

Here,

⟶Coefficientofx

2

(a)=8k

⟶Coefficientofx(b)=−8k

⟶Constantterm(c)=1

\begin{gathered}\textsf{To have equal zeroes :} \\ \\ \mathsf{\implies D \: = \: 0} \\ \\ \mathsf{\implies b^{2} \: - \: 4ac \: = \: 0} \\ \\ \textsf{Plug the value of a , b and c.}\end{gathered}

To have equal zeroes :

⟹D=0

⟹b

2

−4ac=0

Plug the value of a , b and c.

\begin{gathered}\mathsf{\implies (-8k)^{2} \: - \: 4 \: \times \: 8k \: \times \: 1 \: = \: 0} \\ \\ \mathsf{ \implies 64 {k}^{2} \: - \: 32k \: = \: 0 \: } \\ \\ \mathsf{ \implies32k(2k \: - \: 1) \: = \: 0} \\ \\ \mathsf{ \implies(2k \: - \: 1) \: = \: \dfrac{0}{32k} } \\ \\ \mathsf{ \implies2k \: - \: 1 \: = \: 0} \\ \\ \mathsf{ \implies2k \: = \: 1} \\ \\ \mathsf{ \therefore \quad {k} \: = \: \dfrac{1}{2} }\end{gathered}

⟹(−8k)

2

−4×8k×1=0

⟹64k

2

−32k=0

⟹32k(2k−1)=0

⟹(2k−1)=

32k

0

⟹2k−1=0

⟹2k=1

∴k=

2

1

\underline{\textsf{Verification : }}

Verification :

\begin{gathered}\textsf{Plug the value of k in above equation : } \\ \\ \mathsf{\implies 8kx(x \: - \: 1) \: + \: 1 \: = \: 0} \\ \\ \mathsf{\implies 8\Bigg( \dfrac{1}{2} \Bigg) x ( x \: - \: 1) \: + \: 1 \: = \: 0} \\ \\ \mathsf{\implies 4x(x \: - \: 1 ) \: + \: 1 \: = \: 0} \\ \\ \mathsf{\implies 4{x}^{2} \: - \: 4x \: + \: 1 \: = \: 0} \\ \\ \mathsf{\implies (2x)^{2} \: - \: 2 \: \cdot \: 2x \: \cdot \: 1 \: + \: {(1)}^{2} \: = \: 0}\end{gathered}

Plug the value of k in above equation :

⟹8kx(x−1)+1=0

⟹8(

2

1

)x(x−1)+1=0

⟹4x(x−1)+1=0

⟹4x

2

−4x+1=0

⟹(2x)

2

−2⋅2x⋅1+(1)

2

=0

\begin{gathered}\textsf{Using Algebraic Identity : } \\ \\ \boxed{\mathsf{\implies {a}^{2} \: - \: 2ab \: + \: {b}^{2} \: = \: (a \: - \: b)^{2}}}\end{gathered}

Using Algebraic Identity :

⟹a

2

−2ab+b

2

=(a−b)

2

\begin{gathered}\mathsf{\implies (2x \: - \: 1)^{2} \: = \: 0 } \\ \\ \mathsf{\implies (2x \: - \: 1)(2x \: - \: 1) \: = \: 0} \\ \\ \underline{\mathsf{By \: Zero \: Product \: Rule \: : }}\end{gathered}

⟹(2x−1)

2

=0

⟹(2x−1)(2x−1)=0

ByZeroProductRule:

\begin{gathered}\mathsf{\implies (2x \: - \: 1) \: = \: 0 \quad \: or \: \implies (2x \: - \: 1) \: = \: 0} \\ \\ \mathsf{ \implies 2x \: = \: 1 \quad \: or \: \implies 2x \: = \: 1} \\ \\ \mathsf{ \implies x \: = \: \dfrac{1}{2} \quad \: or \: \implies x \: = \: \dfrac{1}{2} }\end{gathered}

⟹(2x−1)=0or⟹(2x−1)=0

⟹2x=1or⟹2x=1

⟹x=

2

1

or⟹x=

2

1

\textsf{Now, we got that zeroes are real and equal.}Now, we got that zeroes are real and equal.

\underline{\textsf{Verified !!}}

Verified !!

\boxed{\boxed{\mathsf{The \: Value \: of \: k \: is \: \dfrac{1}{2}.}}}

TheValueofkis

2

1

.

\begin{gathered}\textsf{Note -: While finding the value of k , we} \\ \textsf{ won't take another value as 0.}\\\textsf{If we do so then the equation} \\ \textsf{ won't remain a Quadratic Equation.}\end{gathered}

Note -: While finding the value of k , we

won’t take another value as 0.

If we do so then the equation

won’t remain a Quadratic Equation.

Similar questions