Math, asked by meenatiwari567, 1 year ago

Find the value of k for which the roots of the quadratic equation (k-4)x^2+2(k-4)x+2=0 are equal

Answers

Answered by Anonymous
5

SOLUTION ☺️

 =  > (k - 4)x {}^{2}  + 2(k - 4)x +2 = 0 \\    =  > a = k - 4 \\  =  > b = 2(k - 4) \\  =  > c = 2 \\  =  > since \: roots \: are \: equal \\  =  >  discriminate = 0 \\   =  > b {}^{2}  - 4ac = 0 \\  =  > 2(k - 4) {}^{2}  - 4(k - 4)(2) = 0 \\  =  > 4(k {}^{2}  - 8k + 16) - 8(k - 4) = 0 \\  =  > 4k {}^{2}   - 32k + 64 - 8k + 32 = 0 \\  =  > 4k {}^{2}  - 40k + 96 = 0 \\  =  > k {}^{2}  - 10k + 24 = 0 \\  =  >k {}^{2}  - 6k - 4k + 24 = 0 \\   =  > k(k - 6) - 4(k - 6) = 0 \\  =  > (k - 6) = 0 \:  \: or(k - 4) = 0 \\  =  > k = 6 \:  \: or  \: k = 4

HOPE it helps ✔️


meenatiwari567: Thanks a lot
Similar questions