Math, asked by achronicbibliophile, 9 months ago

find the value of k if 0=(2K-8)^2-16(K-4)​

Answers

Answered by SasankaAllamaraju
1

(2k-8)²-16(k-4) =0

4k²+64-32k-16k+64 =0

4k²-48k+128=0

k²-12k+32=0

k= 12±√(144-128) / 2

= 12±4 / 2

= 8,4

so k=8,4

plz mark as the brainliest

Answered by TrickYwriTer
1

Step-by-step explanation:

 \huge \mathcal \red{A}\huge \mathcal \green{n} \huge \mathcal \orange{s}\huge \mathcal \blue{w}\huge \mathcal{e}\huge \mathcal \green{r - }

To Find -

Value of k

(2k - 8) {}^{2}  - 16(k - 4)  = 0\\  \\ \leadsto \:  (2k) {}^{2}  + (8) {}^{2}  - 2 \times 2k \times 8 - 16k + 64 = 0 \\  \\  \leadsto4k {}^{2}  + 64 - 32k - 16k + 64 = 0 \\  \\ \leadsto 4k {}^{2}  - 48k + 128 = 0 \\  \\ now \bold \:{ factorising \: this} \\  \\  \leadsto4k {}^{2}  - 16k - 32k + 128 \\  (by \: middle \: term \: split)\\  \\  \leadsto4k(k - 4) - 32(k - 4) \\  \\ \leadsto (k - 4)(4k - 32) \\  \\ k - 4 = 0 \:  \:  \: and \:  \:  \: 4k - 32 = 0 \\  \\ k = 4 \: and \: k =  \frac{32}{4}  \\  \\ k = 4 \:  \:  \: and \: k \:  = 8

Similar questions