Math, asked by vighneshpeta26, 9 months ago

Find the value of k, if k2 + 4k + 8, 2k2 + 3k + 4 and 3k2 + 4k + 4 are 3 consecutive terms of an AP.

Answers

Answered by Anonymous
3

Answer:-

\sf{The \ value \ of \ k \ is \ -2.}

Given:

  • \sf{Three \ consecutive \ terms \ of \ AP \ are}
  • \sf{k^{2}+4k+8, \ 2k^{2}+3k+4 \ and }
  • \sf{3k{2}+4k+4.}

To find:

  • The value of k.

Solution:

\sf{Let \ t_{1}=k^{2}+4k+8,}

\sf{t_{2}=2k^{2}+3k+4}

\sf{t_{3}=3k^{2}+4k+4}

\boxed{\sf{2\times \ t_{2}=t_{1}+t_{3}}}

\sf{\therefore{2(2k^{2}+3k+4)=(k^{2}+4k+8)+(3k^{2}+4k+4)}}

\sf{\therefore{4k^{2}+6k+8=4k^{2}+8k+12}}

\sf{\therefore{6k-8k=12-8}}

\sf{\therefore{-2k=4}}

\sf{\therefore{k=-\frac{4}{2}}}

\boxed{\sf{\therefore{k=-2}}}

\sf\purple{\tt{\therefore{The \ value \ of \ k \ is \ -2.}}}

Answered by Anonymous
2

Given that ,

The three consecutive terms of AP is k² + 4k + 8 , 2k² + 3k + 4 , and 3k² + 4k + 4

We know that , the difference of two consecutive terms of an AP is constant or same

Thus ,

 \rm \hookrightarrow 2 {k}^{2}  + 3k + 4 - ( {k}^{2}  + 4k + 8) = 3 {k}^{2}  + 4k + 4 - (2 {k}^{2}  + 3k + 4)</p><p> \\  \\  \rm \hookrightarrow</p><p>2 {k}^{2} + 3k + 4 -  {k}^{2} - 4k - 8 = 3 {k}^{2}  + 4k + 4 - 2 {k}^{2} - 3k - 4 \\  \\ \rm \hookrightarrow  {k}^{2}  - k - 4 =  {k}^{2}  + k \\  \\  \rm \hookrightarrow - 2k = 4 \\  \\ \rm \hookrightarrow k =   - 2

 \therefore \rm \underline{The \:  value \:  of \:  k  \: is -2}

Similar questions