find the value of k if tan (15 minus k)degrees equals cot (2k + 60)degrees.
Answer this with step by step solutions.
Answers
Solution :-
tan (15 - k) = cot (2k + 60)
To find the value of k we need to equate angles of both sides
To equate angles the trignometric ratios on both sides should be same
To make same trigonometric ratios we should use trignometric ratios of complementary angles concept
⇒ tan (15 - k) = cot (2k + 60)
⇒ cot [ 90 - (15 - k) ] = cot (2k + 60)
[ Because tan θ = cot (90 - θ) ,here θ = 15 - k ]
⇒ cot (90 - 15 + k) = cot (2k + 60)
⇒ cot (75 + k) = cot (2k + 60)
Comparing on both sides
⇒ 75 + k = 2k + 60
⇒ 75 - 60 = 2k - k
⇒ 15 = k
⇒ k = 15
Therefore the value of k is 15.
Answer:
k = 15
Step-by-step explanation:
Given :
tan ( 15 - k ) = cot ( 2 k + 60 )
Using complementary formula :
i.e. tan ( 90 - Ф ) = cot Ф
cot ( 90 - ( 15 - k ) ) = cot ( 2 k + 60 )
On comparing we get :
90 - ( 15 - k ) = ( 2 k + 60 )
90 - 15 + k = 2 k + 60
75 + k = 2 k + 60
k = 75 - 60
k = 15.