Math, asked by Gurmeetubhi1742, 1 year ago

Find the value of k if the distance between the points ( k,2) and (3,4) be 8

Answers

Answered by ayushanil2003
7

Answer:

Step-by-step explanation:

Distance Formula = √(x2-x1)² + (y2-y1)²

                               8 = √(k-3)² + (4-2)²

                               64 = (k-3)² + 4

                                60 = (k-3)²

                                ± 7.7 = k-3

       +7.7 + 3 = k                       -7.7 + 3 = k

          10.7 = k                            - 4.7 = k

Answered by wifilethbridge
1

The value of k are -0.464,6.464

Step-by-step explanation:

A=(x_1,y_1)=(k,2)

B=(x_2,y_2)=(3,4)

Distance =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

We are given that  the distance between the points ( k,2) and (3,4) be 8

So, 8 =\sqrt{(3-k)^2+(4-2)^2}

8^2 =(3-k)^2+(4-2)^2

16 = 3^2 +k^2-6k+4

16=13+k^2-6k

k^2-6k-3=0

k=-0.464,6.464

Hence The value of k are -0.464,6.464

#Learn more:

Find the value of k if slope of joining point (3,4) and (k,2) is -3​

https://brainly.in/question/14904411

Similar questions