Math, asked by amanteja3555, 8 months ago

Find the value of k, if the equation 2x² + kxy - 6y² + 3x + y +1=0 represents a pair of straight lines.
Find the point of intersection of the lines and the angle between the straight lines for this value of k.​

Answers

Answered by khyatiRamteke
3

Answer:

12x

2

−10xy+2y

2

+11x−5y+λ=0

For pair of straight line

ax

2

+2hxy+by

2

+2gx+2fy+c=0

a

h

g

h

b

f

g

f

c

=0

Here, $$a=12,h=\cfrac=-{10}{2}=-5,b=2,g=\cfrac{11}{2}

,\cfrac=-{5}{2}& c=\lambda$$

12

−5

2

11

−5

2

2

5

2

11

2

5

λ

=0

=12(12λ−

4

25

)+5(−5λ+

4

55

)+

2

11

(

2

25

−11)=0

or,12(8λ−25)−100λ+275+33=0

96λ−300−100λ+308=0

or,−4x+8=0

λ=2

Equation is

12x

2

−10xy+2y

2

+11x−5y+2=0

12x

2

−4xy+8x+2y

2

−6xy−4y+3x−y+2=0

4x(3x−y+2)−2y(−y+3x+2)+(4x−2y+1)=0

Two eqations are

3x−y+2=0×2→(1)

4x−2y+1=0×1→(2)

6x−2y+4=0

4x−2y+1=0

−−−−−−−−

2x+3=0

x=−

2

3

Putting value of x in (2)

4(−

2

3

)−2y+1=0

−6−2y=1=0

y=−

2

5

So point of intersection is

(−

2

3

,

2

5

)

y=3x=2 herem

1

=3

m

1

=3

y=

2

4x+1

&m

2

=

2

4

=2

So, angle between them

=tan

−1

1+m

1

m

2

m

1

−m

2

)

=tan

−1

(

1+6

3−2

)&tan

−1

(−

1+6

3−2

)

=tan

−1

(

7

1

)&tan

−1

(−

7

1

)

and other angls are

=π−tan

−1

(

7

1

)&π−tan

−1

(−

7

1

)

Pair of angle bisector

a

1

2

+b

1

2

a

1

x+b

1

y+c

1

a

2

2

+b

2

2

a

2

x+b

2

y+c

2

where equations are a

1

x+b

1

y+c

1

=0 & a

2

x+b

2

y+c

2

=0

So,

3

2

+1

2

3x−y+2

4

2

+2

2

4x−2y+1

10

3x−y+2

20

4x−2y+1

or, 3x−y+2=±

2

4x−2y+1

Answered by jnandu675
6

Answer:

HERE IS YOUR ANSWER WITH

STEP BY STEP EXPLANATION

Attachments:
Similar questions