Find the value of k , if the following pair of equations 2x+15y=k ; kx+45y=18 has infinitely many solutions.
Answers
Answered by
1
Answer:
2x+15y=k
2x+15y=kkx+45y=18
2x+15y=kkx+45y=18a1/a2 = b1/b2 = c1=c2
2x+15y=kkx+45y=18a1/a2 = b1/b2 = c1=c22/k = 15/45 = k/18
2x+15y=kkx+45y=18a1/a2 = b1/b2 = c1=c22/k = 15/45 = k/182/k = k/18
2x+15y=kkx+45y=18a1/a2 = b1/b2 = c1=c22/k = 15/45 = k/182/k = k/18Cross multiply each other,
2x+15y=kkx+45y=18a1/a2 = b1/b2 = c1=c22/k = 15/45 = k/182/k = k/18Cross multiply each other, 2*18 = k*k
2x+15y=kkx+45y=18a1/a2 = b1/b2 = c1=c22/k = 15/45 = k/182/k = k/18Cross multiply each other, 2*18 = k*k36 = k2 (k Square)
2x+15y=kkx+45y=18a1/a2 = b1/b2 = c1=c22/k = 15/45 = k/182/k = k/18Cross multiply each other, 2*18 = k*k36 = k2 (k Square) Root 36 = k
Step-by-step explanation:
Hope it helps
Attachments:
Similar questions