Math, asked by moonlight95, 2 months ago

Find the value of k if the following quadratic equation has equal roots.

Attachments:

Answers

Answered by amansharma264
10

EXPLANATION.

Quadratic equation.

⇒ k²x² - 2(2k - 1)x + 4 = 0.

As we know that,

⇒ D = Discriminant Or b² - 4ac.

For real and equal roots : D = 0.

⇒ [-2(2k - 1)]² - 4(k²)(4) = 0.

⇒ [4(2k - 1)²] - 16k² = 0.

⇒ 4(4k² + 1 - 4k) - 16k² = 0.

⇒ 16k² + 4 - 16k - 16k² = 0.

⇒ 4 - 16k = 0.

⇒ 4 = 16k.

⇒ k = 4/16.

⇒ k = 1/4.

                                                                                                                         

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Salmonpanna2022
8

Step-by-step explanation:

Given:-

 \tt{ {k}^{2}  {x}^{2}  - 2(2k - 1)x + 4 = 0} \\  \\

To find:-

 \tt{Find  \: the  \: value \:  of  \: k \:  if  \: the  \: following \:  quadratic \:  equation \:  has \:  equal \:  roots. } \\  \\

Solution:-

Let's solve the problem

We, have

 \tt{ {k}^{2}  {x}^{2}  - 2(2k - 1)x + 4 = 0} \\  \\

Here, a =

b = -2(2k-1)

c = 4

It is given that roots are real and equal.

∴ b² - 4ac = 0

According to the question

D = 0

Now,

 \tt{[ - 2(2k - 1){ ]}^{2}  - 4 {k}^{2}  \times 4 = 0} \\  \\

 \tt{4(4 {k}^{2}  - 4k + 1) - 16 {k}^{2}  = 0} \\  \\

 \tt{ \cancel{16 {k}^{2}}  - 16k + 4 -  \cancel{16 {k}^{2} } = 0} \\  \\

 \tt{ - 16k  + 4 = 0} \\  \\

 \tt{ \cancel{ - }16k =   \cancel{- }4} \\  \\

 \tt{16k = 4} \\  \\

 \tt{k =  \cancel{ \frac{4^{1} }{16^{4}}  }} \\  \\

 \tt{k =   \frac{1}{4} } \\  \\

Answer:-

 \tt{The \:  value \:  of \:  K \:  is   \: \:  \frac{1}{4} }. \\  \\

Similar questions