Math, asked by nasim1128, 4 months ago

find the value of k, if the point p (2,4) is equidistant from the point (5,k) and (k,7)​

Answers

Answered by EnchantedGirl
15

Given:-

  • The point P(2,4) is equidistant from the points (5,k) and (k,7)​

\\

To find:-

  • Value of k.

\\

Solution:-

\\

Given, P(2,4)

Let, A(5,k) and B(k,7)​

As point P is equidistant from the points A&B,

  PA = PB

\\

We know:

\leadsto \underline{\boxed{\sf Distance =\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}  }}

Now,

:\implies \sf PA=PB\\\\:\implies \sf \sqrt{(5 - 2)^2 + (k -4)^2} = \sqrt{(k- 2)^2 + (7 -4)^2} \\

Squaring on both sides,

:\implies  \sf (5 - 2)^2 + (k -4)^2 = (k- 2)^2 + (7 -4)^2 \\\\:\implies \sf 9 + k^2 + 16- 8k = k^2 + 4 -4k + 9\\\\:\implies \sf k^2- 8k + 16- k^2 -4 + 4k = 0\\\\:\implies \sf -4k + 12 = 0\\\\:\implies \sf 4k = 12\\\\:\implies \sf k=\frac{12}{4} \\\\:\implies \boxed{\boxed{\sf k=3}}\\\\

Hence,

The value of k is 3.

______________

Answered by Anonymous
0

★Given:-

The point P(2,4) is equidistant from the points (5,k) and (k,7)

\\

★To find:-

Value of k.

\\

★Solution:-

\\

Given, P(2,4)

Let, A(5,k) and B(k,7)

As point P is equidistant from the points A&B,

  PA = PB

\\

We know:

\leadsto \underline{\boxed{\sf Distance =\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}  }}

Now,

:\implies \sf PA=PB\\\\:\implies \sf \sqrt{(5 - 2)^2 + (k -4)^2} = \sqrt{(k- 2)^2 + (7 -4)^2} \\

Squaring on both sides,

:\implies  \sf (5 - 2)^2 + (k -4)^2 = (k- 2)^2 + (7 -4)^2 \\\\:\implies \sf 9 + k^2 + 16- 8k = k^2 + 4 -4k + 9\\\\:\implies \sf k^2- 8k + 16- k^2 -4 + 4k = 0\\\\:\implies \sf -4k + 12 = 0\\\\:\implies \sf 4k = 12\\\\:\implies \sf k=\frac{12}{4} \\\\:\implies \boxed{\boxed{\sf k=3}}\\\\

Hence,

The value of k is 3.

______________

Similar questions