Find the value of k if the quadratic equation ( k - 4 )x² + 2( k - 4 )x + 4 = 0 has real and equal roots.
Answers
Answered by
0
Answer:
Step-by-step explanation:
ARE YOU FAMILIAR WITH THE DISCRIMINANT?
IF DISCRIMINANT EQUALS ZERO, ROOTS ARE REAL AND EQUAL.
D=SQT of B^2 - 4AC
THEN
B=4(X-4)
A=K-4
C=4
CONVERT TO THE FORMULA OF D=SQT of B^2-4AC
YOU WILL GET K=8
TO GET THE ANSWER,
YOU NEED TO SHIFT SOLVE IN CALCULATOR..use 991es plus or 570es plus type of calcu.
To know more just beep me up
Answered by
1
Answer:
heya✌✌
Step-by-step explanation:
For equal roots it must have D=0 where D= b^2-4ac (b square minus 4ac)
or, b^2-4ac=0
or, (k+1)^2-4(k+4)(1)=0
or, k^2+2k+1-4k-4=0
or, k^2-2k-3=0
or, k^2-3k+k-3=0
or, k(k-3)+1(k-3)=0
or, k-3=0 and k+1=0
Hence the value of k should be 3 or -1.
Hope it helped.
Hope it helped.plss mark brainliest
Similar questions