Math, asked by sangeetanpm, 6 hours ago

Find the value of k, if the zeroes
of polynomial p(x) = (k-1) x² + 4x + (2k - 3)
are
reciprocals of each others

(a) -2

(b) 4 (c) 2 (d) -4​

Answers

Answered by mathdude500
3

Answer:

\boxed{\sf \: (c) \:  \:  \:  \: 2 \: } \\

Step-by-step explanation:

Given that, the zeroes of polynomial p(x) = (k-1) x² + 4x + (2k - 3) are reciprocals of each other.

Let assume that

\sf \:  \alpha  \: and \:  \dfrac{1}{ \alpha } \: be \: the \: zeroes \: of \: p(x) = (k - 1) {x}^{2} + 4x + (2k - 3) \\

We know,

\boxed{{\sf Product\ of\ the\ zeroes=\dfrac{Constant}{coefficient\ of\ x^{2}}}}\\

So, using this result, we get

\sf \:  \alpha  \times  \dfrac{1}{ \alpha } = \dfrac{2k - 3}{k - 1}   \\

\sf \:  1 = \dfrac{2k - 3}{k - 1}   \\

\sf \: 2k - 3 = k - 1 \\

\sf \: 2k - k = 3 - 1 \\

\implies\sf \: \sf \: k = 2 \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered} \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions