Math, asked by bhaktabhanujoshi67, 3 days ago

find the value of k if tje distance between the point (3,k) and (-3,2) is 2root under 10 unit​

Answers

Answered by Aryan0123
21

Answer:

k = 0 or 4

\\

Step-by-step explanation:

Given:

  • x₁ = 3
  • x₂ = -3
  • y₁ = k
  • y₂ = 2
  • Distance = 2√10 units

\\

To find:

Value of k = ?

\\

Solution:

Applying distance formula,

\bf{Distance  = \sqrt{(x _{2}  - x_1)^{2}  + (y_2 - y_1) ^{2} } } \\  \\

Substitute the given values.

 \to \:  \sf{Distance =  \sqrt{ {( - 3 - 3)}^{2} +  {(2 - k)}^{2}  } } \\  \\

 \to \:  \sf{2 \sqrt{10}  =  \sqrt{ {( - 6)}^{2} + 4 +  {k}^{2} - 2(2)k  } } \\  \\

 \to \:  \sf{2 \sqrt{10}  =  \sqrt{36 + 4 +  {k}^{2}  - 4k} } \\  \\

\to \:  \sf{2 \sqrt{10}  =  \sqrt{40 +  {k}^{2}  - 4k} } \\  \\

Squaring on both sides,

\to \:  \sf{40 = 40  +  {k}^{2} - 4k } \\  \\

\to \:  \sf{ \cancel{40} =  \cancel{40}  +  {k}^{2} - 4k } \\  \\

 \to \:  \sf{ {k}^{2}  - 4k = 0} \\  \\

 \to \:  \sf{k(k - 4) = 0} \\  \\

 \therefore \boxed{ \bf{k = 0  \: \: or \:  \: 4}} \\  \\

Answered by TrustedAnswerer19
95

Answer:

\green { \large{\boxed {\sf \therefore \: k = 0 \:  \:  \: or \:  \:  \: 4}}}

Step-by-step explanation:

We know that,

 \sf \: if \: (x_1,y_1) \:  \: and \: (x_2, y_2) \: are \: two \: points \\ \sf \:  \: then \: distance \: between \: them \: is \:  \\  \\ \pink{  \bf \:  \sqrt{ {(x_1 - x_2)}^{2} +  {(y_1 - y_2)}^{2}  }  \:  \: unit}

Given that,

Two points are (3,k) and (-3,2)

and diatance between them = 2\sqrt{10}

According to the question,

 \sf \: x_1 = 3 \\  \sf \: x_2 =  - 3  \\ \sf \: y_1 = k \\  \sf \: y_2 = 2

So,

 \:  \:  \:  \:  \sf \:  \sqrt{ { \{3 - ( - 3)} \}^{2}  +  {(k - 2)}^{2} }  = 2 \sqrt{10}  \\   \\  \sf \implies \:   \sqrt{ {(3 + 3)}^{2} +  {k}^{2}   - 2 \times k \times 2 +  {2}^{2} }  = 2 \sqrt{10}  \\  \\   \sf \implies \:  \sqrt{ {6}^{2}  +  {k}^{2}  - 4k + 4}  = 2 \sqrt{10}  \\  \\   \sf \implies \:  \sqrt{36 +  {k}^{2}  - 4k + 4}  = 2 \sqrt{10}  \\  \\   \sf \implies \:  \sqrt{ {k}^{2} - 4k + 40 }  = 2 \sqrt{10}  \\  \\   \sf \implies \:  {( \sqrt{ {k}^{2} - 4k + 40 } })^{2}  = ( {2 \sqrt{10} })^{2}  \\  \\   \sf \implies \:  {k}^{2}  - 4k + 40 = 40 \\  \\   \sf \implies \:  {k}^{2}  - 4k = 0 \\  \\   \sf \implies \: k(k - 4) = 0 \\  \\  \sf \therefore \: k = 0  \:  \:  \: \: or  \:  \:  \:  \: \: k - 4 = 0 \\  \\   \green {\boxed {\sf \therefore \: k = 0 \:  \:  \: or \:  \:  \: 4}}

Similar questions