Find the value of k if x= 1÷2-√3 is azero of polynomial 2kx^2 - 7x+ k
Answers
Answered by
0
Hi ,
x = 1/( 2 - √3 )
rationalize the denominator ,
x = ( 2 + √3 ) / ( 2 - √3 ) ( 2 + √3 )
x = ( 2 + √3 ) / [ 2² - ( √3 )² ]
x = ( 2 + √3 ) / ( 4 - 3 )
x = 2+ √3 -----( 1 )
according to the problem given,
let p( x ) = 2kx² -7x +k
If x = 2 + √3 is a zero of the polynomial then
p( x ) = 0
p( 2 + √3 ) = 0
2k ( 2 + √3 )² -7(2+√3) + k = 0
2k[ 2² + (√3)² + 2×2×√3 ] -14 - 7√3 + k =0
2k( 7 + 4√3 ) - 14 - 8√3 + k = 0
k(14 + 8√3 +1 ) = 14 + 8√3
k = ( 14 + 8√3 )/(15+8√3)
I hope this helps you.
:)
x = 1/( 2 - √3 )
rationalize the denominator ,
x = ( 2 + √3 ) / ( 2 - √3 ) ( 2 + √3 )
x = ( 2 + √3 ) / [ 2² - ( √3 )² ]
x = ( 2 + √3 ) / ( 4 - 3 )
x = 2+ √3 -----( 1 )
according to the problem given,
let p( x ) = 2kx² -7x +k
If x = 2 + √3 is a zero of the polynomial then
p( x ) = 0
p( 2 + √3 ) = 0
2k ( 2 + √3 )² -7(2+√3) + k = 0
2k[ 2² + (√3)² + 2×2×√3 ] -14 - 7√3 + k =0
2k( 7 + 4√3 ) - 14 - 8√3 + k = 0
k(14 + 8√3 +1 ) = 14 + 8√3
k = ( 14 + 8√3 )/(15+8√3)
I hope this helps you.
:)
Similar questions