Math, asked by heamraj65, 2 months ago

find the value of k if (x-1) is a factor of 4x^3+3x^2-4x+k​

Answers

Answered by ThePhenonal
6

\sf\underline\red{Given:-}

\sf Equation \:\: \longrightarrow 4x³+3x²-4x+k

\sf (x-1) \:\: is \:\: a \:\: factor

\sf\underline\red{To \:\: Find:-}

\sf Value \:\: of \:\: k=?

\sf\underline\red{Solution:-}

\sf (x-1)=0

\sf x=1

\sf Substituting \:\: x \:\: in \:\: the \:\: equation

\sf 4(1)³+3(1)²-4(1)+k=0

\sf 4+3-4+k=0

\sf k=-3

\sf\green{ Value \:\: of \:\: k \:\: is \:\: -3 }

Answered by ARCHISHA008
12

▬▬▬▬▬▬▬▬▬▬▬▬▬

Let p(x) = 4x³ + 3x² - 4x + k

& g(x) = (x - 1)

Then, g(x) = 0

(x - 1) = 0

x = 0 + 1

x = 1

Now, By factor theorem

if (x - 1) is a factor of p(x) then p(α) = 0

So, p(α) = 0 4(1)³ + 3(1)² - 4(1) + k = 0

4 × 1 + 3 × 1 - 4 × 1 + k = 0

4 + 3 - 4 + k = 0

7 - 4 + k = 0

3 + k = 0

k = 0 - 3

k = - 3

∴ The required value of k is - 3.

▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions