Math, asked by Anonymous, 1 year ago

Find the value of k if x-1 is a factor of kx2-3x+k

Answers

Answered by LovelyG
25

Answer:

\large{\underline{\boxed{\sf k = \dfrac{3}{2}}}}

Step-by-step explanation:

Given that ;

(x - 1) is a factor of the quadratic polynomial (kx² - 3x + k).

This question can be solved by plugging out the value of x, and then substituting it in the polynomial and comparing it with zero.

⇒ x - 1 = 0

⇒ x = 1

Substituting the value of x in the above polynomial.

⇒ kx² - 3x + k = 0

⇒ k(1)² - 3 * 1 + k = 0

⇒ k + k - 3 = 0

⇒ 2k = 3

⇒ k = \sf \dfrac{3}{2}

_______________________

Hence, the value of k is \bf \dfrac{3}{2}

Answered by BrainlyConqueror0901
72

Answer:

\huge{\red{\boxed{\green{\sf{k=\frac{3}{2}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

{ \green{(x - 1) \: is \: a \: factor \: of   \: k {x}^{2}  - 3x + k = 0}} \\  \\ {\red{value \: of \: k =?  }}

_________________________________________

 \to if \: x - 1 \: is \: a \: factor \: of \: given \: polynomial \\  \to so \: f(x) = x - 1 = 0  \\   \to (x = 1) \\  \\ according \: to \: given \: information \\ p(x) = k {x}^{2}   - 3x + k = 0 \\ p(1) = k \times  {1}^{2}  - 3 \times 1 + k = 0 \\  \to k - 3 + k = 0 \\  \to \: 2k - 3 = 0 \\  \to \: 2k = 3 \\  \to \: k  = \frac{3}{2}

\huge{\red{\boxed{\green{\sf{k=\frac{3}{2}}}}}}

_________________________________________

Similar questions