Music, asked by naredalakhan, 8 months ago

Find the value of k, if x-1 is a factor of p(x) in each of the following cases:
(i) p(x) =x^2+x+k​

Answers

Answered by Blossomfairy
10

  \implies\sf{x - 1 = 0} \\  \implies \sf{x = 0 + 1} \\    \boxed{  \sf \red{ \implies \: x = 1}}

\rule{200}2

 \sf \purple{p(x) =  {x}^{2} + x + k } \\  \implies \sf{p(1) =  {1}^{2}  + 1 + k = 0} \\  \implies \sf{ 1 + 1 + k = 0 }  \\  \implies \sf{2 + k = 0}  \\  \implies \sf{k = 0 - 2}  \\   \boxed {\sf \red{\implies k =  - 2}}

Answered by sara122
2

Answer:

  \\ \huge \bigstar \tt \underbrace \red {information } \bigstar \\  \huge➬ \\  \\

  • Class 9
  • Chapter ➲ Polynomials
  • Excercise ➲ 2.4
  • Question ➲ 3 (i)

 \\  \\

  \\ \huge \bigstar \tt \underbrace \red {solution} \bigstar \\  \huge➬ \\  \\

\large \tt\blue➦ x - 1 = 0 \\ \large \tt\blue➦ x = 1 \\  \\ \large \tt\blue{(we \: got \: the \: value \: of \: x \:) } \\  \\ \large \tt \red{now \: using \: the \: remainder \: theorem} \\  \\ \large \tt{let \: p(x) =  {x}^{2}  + x + k} \\  \\ \large \tt \pink{ \: putting \: x = 1} \\  \\  \\ \large \tt\blue➦ p(1) =  {1}^{2}  + 1 + k  = 0\\ \large \tt\blue➦ 1 + 1 + k = 0 \\ \large \tt\blue➦ 2 + k = 0 \\ \large \tt\blue➦ k =     \bold{\fbox \red{\boxed{- 2}}} \\  \\

Similar questions