Find the value of k in (2k+4)^2 -(k-5)^2=26k
Answers
Answered by
20
shadowsabers03:
But I can see his profile.
Answered by
4
Answer:
k = \pm\sqrt{3}k=±
3
\begin{lgathered}(2k+4)^2-(k-5)^2=26k \\ \\ ((2k+4)+(k-5))((2k+4)-(k-5))=26k \ \ \ \ \ [a^2-b^2=(a+b)(a-b)] \\ \\ (2k+4+k-5)(2k+4-k+5)=26k \\ \\ (3k-1)(k+9)=26k \\ \\ 3k^2+26k-9=26k \\ \\ 3k^2-9=0 \\ \\ 3k^2=9 \\ \\ k^2=\frac{9}{3} = 3 \\ \\ k = \bold{\pm\sqrt{3}}\end{lgathered}
(2k+4)
2
−(k−5)
2
=26k
((2k+4)+(k−5))((2k+4)−(k−5))=26k [a
2
−b
2
=(a+b)(a−b)]
(2k+4+k−5)(2k+4−k+5)=26k
(3k−1)(k+9)=26k
3k
2
+26k−9=26k
3k
2
−9=0
3k
2
=9
k
2
=
3
9
=3
k=±
3
Similar questions