Math, asked by aryan961528, 1 year ago

find the value of k in each of the following quadratic equations for which the given value of x is a root of the given quadratic equation 14 x square - 27 X + K is equal to zero therefore x is equal to 5 by 2​

Answers

Answered by alishasaturdekar2003
0

Answer:

Step-by-step explanation: put the value of x in the equation :

14x^2 -27x + k =0

14(5/2)^2-27(5/2) +k =0

87.5-67.5 + k=0

K =(-20)

If you want to verify the answer then put the value of k in the equation and factorize it , you will get the value or the roots.

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=-20}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies 14x^{2}  -27x + k = 0 }\\  \\ \tt{:\implies x=\frac{5}{2}} \\\\\red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies 14x^{2}  -27x + k= 0}  \\  \\  \text{Putting \: the \: values\:of\:x} \\   \tt{: \implies 14\times(\frac{5}{2})^{2}  -  27\times \frac{5}{2} + k= 0 } \\  \\    \tt{: \implies \: 14\times \frac{25}{4}-\frac{135}{2}+k= 0 } \\  \\  \tt{ : \implies \:   \frac{175}{2} -\frac{135}{2}+k = 0 } \\\\ \tt{: \implies \frac{175-135+2k}{2}= 0} \\  \\   \tt{: \implies 40+2k=0} \\\\ \tt{:\implies k=\frac{-40}{2}}  \\  \\ \green{\tt{: \implies k = -20}}

Similar questions