Math, asked by kapilsehrawate, 11 months ago

find the value of k in which the quadratic equation is X square + 2 root 2kx+18=0.has equal roots​

Answers

Answered by anukeerthika34
1

Answer:

k =3

Step-by-step explanation:

 {x}^{2}  + 2 \sqrt{2} kx + 18 = 0 \\ a = 1 \\ b  = 2 \sqrt{2}k \\ c = 18 \\ d =  {b}^{2}  - 4ac \\ 0 =  {(2 \sqrt{2}) }^{2}  - 4(1)(18)  \\ 0 = 8 {k}^{2}  - 72 \\ 8 {k}^{2}  = 72 \\  {k }^{2}  = 9 \\ k = 3

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\pm 3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies x^{2}  +2\sqrt{2}kx + 18 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies x^{2}  +2\sqrt{2}kx + 18= 0} \\   \\   \tt{\circ  \: a = 1} \\ \\  \tt{\circ \: b = 2\sqrt{2}k}\\\\ \tt{\circ \:c = 18}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (2\sqrt{2}k)^{2}  -  4\times1 \times 18= 0 } \\  \\    \tt{: \implies \:  8{k}^{2}  -72 = 0 } \\  \\  \tt{ : \implies \:   8({k}^{2}   - 9) = 0 } \\\\ \tt{: \implies k^{2}= 9} \\  \\   \tt{: \implies k= \sqrt{9}} \\  \\   \green{\tt{: \implies k = \pm 3 }}

Similar questions