Find the value of 'K' so that 5k + 3, 6k + 3, 8k - 4 will form three consecutive
terms of an A.P.
Answers
Answered by
1
Answer:
a,b,c are three consecutive terms of an A.P then 2b=a+c
So, 2(2k2+3k+6)=k2+4k+8+3k2+4k+4
4k2+6k+12=4k2+8k+12
6k=8k
∴k=0
l think this helps you then follow me Dear
Answered by
7
Answer :-
- Value of k is 7.
Given :-
- Three terms of an AP (5k + 3), (6k + 3) and (8k - 4).
To Find :-
- Value of k.
Solution :-
Here
Three terms of an AP are
- (5k + 3)
- (6k + 3)
- (8k - 4)
As we know that
- C - B = B - A
Let
- A = (5k + 3)
- B = (6k + 3)
- C = (8k - 4)
Now
⇒ (8k - 4) - (6k + 3) = (6k + 3) - (5k + 3)
⇒ 8k - 4 - 6k - 3 = 6k + 3 - 5k - 3
⇒ 8k - 6k - 4 - 3 = 6k - 5k + 3 - 3
⇒ 2k - 7 = k + 0
⇒ 2k - 7 = k
⇒ 2k - k = 7
⇒ k = 7
Verification :-
⇒ (8k - 4) - (6k + 3) = (6k + 3) - (5k + 3)
⇒ 8(7) - 4 - 6(7) - 3 = 6(7) + 3 - 5(7) - 3
⇒ 56 - 4 - 42 - 3 = 42 + 3 - 35 - 3
⇒ 56 - 4 - 45 = 42 + 3 - 38
⇒ 56 - 49 = 42 - 35
⇒ 7 = 7
Hence, verified !
Similar questions