Math, asked by sharath712, 1 year ago

Find the value of k, so that the following system of equations has no solution:3x +y; (2k-1)x+(k-1)y=(2k-1)

Answers

Answered by adwaithrknair
13

Answer:

Step-by-step explanation:

3x + y =1

(2k-1)x+(k-1)y=2k+1

=> 3x+y-1=0

(2k-1)x+(k-1)y-2k-1 =0

We know,

a1/a2 = b1/b2 not equal to c1/c2 has no solution

Now,we have,

a1=3 , b1=1

a2=2k-1 , b2 = k-1

3/2k-1 = 1/k-1

3(k-1) = 2k -1

3k-3 = 2k -1

3k -2k = -1 +3

k = 2

I hope it will help you

Answered by Anonymous
19

GIVEN EQUATION:-

 \bf \: 3x + y - 1 = 0, \\

 \bf \: and \: (2k - 1)x + (k - 1)y - (2k + 1) = 0 \\

TO FIND OUT:-

 \textsf{Value of k=?} \\  \\

SOLUTION:-

 \bf \: The  \: given  \: equations \:are \: of \: the \: form

\boxed{ \boxed{ \bf \: a_1x+b_1y+c_1=0   \: \&   \: \: a_2x+b_2y+c_2=0} } \\

 \bf \: Where  \: a_1=3,b_1=1,c_1=-1 \\  \\

 \bf \: And \: a_2=(2k-1),b_2=(k-1),c_2=-(2k+1) \\  \\

In order that the given system has no solution, we must have

  \bf \:  \frac{a_1}{a_2} = \frac{b_1}{b_2}  \ne \frac{c_1}{c_2}  \\  \\

This happen when

 \bf \ \frac{3}{(2k - 1)}  =  \frac{1}{(k  - 1)} \ne \frac{1}{(2k + 1)}  \\  \\

 \bf When  \:  \frac{3}{(2k-1)}  =  \frac{1}{(k-1)}  \\

 \bf \: and \:  \frac{1}{(k - 1)}  \ne \frac{1}{(2k + 1)}  \\

 \bf \implies \:  \frac{3}{(2k - 1)}  =  \frac{1}{(k - 1)}  \implies3k - 3 = 2k - 1 \\  \\  \bf \implies \: k = 2

When k=2,then we have,

 \bf  \frac{1}{(k - 1)}   \ne \frac{1}{(2k + 1)} \:  \: \:  \:  \:  \:  --  \huge[ \small  \frac{1}{(2-1)} \ne \frac{1}{(4+1)} \huge]    \\  \\

 \bf \therefore \:  \frac{3}{(2k - 1)}  =  \frac{1}{(k - 1)}  \ne \frac{1}{(2k + 1)}  \\  \\

Hence,the given solution of equation has no solution when k=2

Similar questions