Find the value of K so that the pair of linear equations, (3 K + 1) x + 3 y – 2 = 0 and (K^2 + 1) x + (k–2)y – 5 = 0 is consistent
Answers
Answered by
0
(3k+1)x + 3y - 2 = 0
(k²+1)x + (k-2)y - 5 = 0
3k+1/k²+1 = 3/k-2 ≠ -2/-5
Now, 3k + 1 / k² + 1 = 3/k - 2
⇒ ( 3k + 1 ) ( k-2 ) = 3 ( k² + 1 )
⇒ 3k² - 5k - 2 = 3k² + 3
⇒ -5k - 2 = 3
⇒ -5k = 5
⇒ k = -1
Hence, given system of equation will have no solution for
k = - 1.
Similar questions
Social Sciences,
4 months ago
Math,
4 months ago
Math,
8 months ago
Hindi,
11 months ago
Math,
11 months ago