Math, asked by Anonymous, 10 days ago

find the value of k

→ stu*pid mods, don't delete my question​

Attachments:

Answers

Answered by Intelligentcat
150

Answer:

In each of the following, find the value of k for which the given value is a solution of the given equation :

So, here we are given some equations, which contains two variables out of which the value of ' x 'is provided accordingly and we have to find the actual value of other variable i.e, k in each equation. For that, firstly we will substitute the value of ' x ' and thereafter by taking the equation equal to zero we will be able to find the value of the ' k '

So, Without any further delay, let's do it :-

 \implies \sf i) \: 7x^{2} + kx - 3 = 0 \\ \\

Given :

\dashrightarrow\:\:\bf x = \dfrac{2}{3} \\ \\

Plugging in the value of ' x ' in the above equation :-

\dashrightarrow\:\:\sf 7 \times {\red{\dfrac{2}{3}^{2}}} + k \times \dfrac{2}{3} - 3 = 0 \\ \\

\dashrightarrow\:\:\sf 7 \times \dfrac{4}{9} + \dfrac{2}{3}k - 3 = 0 \\ \\

\dashrightarrow\:\:\sf \dfrac{28}{9} + \dfrac{2}{3}k - 3 = 0  \\ \\

\dashrightarrow\:\:\sf \dfrac{28 + 6k - 27}{9} = 0 \\ \\

\dashrightarrow\:\:\sf \dfrac{1 + 6k }{9} = 0\\ \\

\dashrightarrow\:\:\sf 1 + 6k = 0 \\ \\

\dashrightarrow\:\:\sf 6k = - 1 \\ \\

\dashrightarrow\:\:\sf k = \dfrac{-1}{6} \\ \\

Hence

{\boxed{\bf {The \: value \: of \: k = {\purple{\dfrac{-1}{6} }}}}} \\ \\

____________________

 \implies \sf \: 2) \: x^{2} - x(a + b) + k = 0 \\ \\

Given :

\dashrightarrow\:\:\bf x = a \\ \\

Plugging in the value of ' x ' in the above equation :

\dashrightarrow\:\:\sf  a^{2} - a(a + b) + k = 0 \\ \\

\dashrightarrow\:\:\sf a^{2} - a^{2} - ab + k = 0 \\ \\

\dashrightarrow\:\:\sf {\not{a^{2}}} - {\not{a^{2}}} - ab + k = 0 \\ \\

\dashrightarrow\:\:\sf - ab + k = 0 \\ \\

\dashrightarrow\:\:\sf k = ab \\ \\

{\boxed{\bf {The \: value \: of \: k = {\purple{ab}}}}} \\ \\

__________________

 \implies \sf \: 3) \: kx^{2} + \sqrt 2 x - 4 = 0 \\ \\

Given :

\dashrightarrow\:\:\bf x = \sqrt 2 \\ \\

Plugging in the value of ' x ' in the above equation :-

\dashrightarrow\:\:\sf k ({\sqrt 2})^{2} + \sqrt 2 (\sqrt 2) - 4 = 0 \\ \\

\dashrightarrow\:\:\sf 2k + 2 - 4 = 0 \\ \\

\dashrightarrow\:\:\sf 2k - 2 = 0 \\ \\

\dashrightarrow\:\:\sf 2k = 2 \\ \\

\dashrightarrow\:\:\sf k = \dfrac{\not 2}{\not 2^{ \: \: 1 }} \\

{\boxed{\bf {The \: value \: of \: k = {\purple{1} }}}} \\ \\

__________________

 \implies \sf 4) \: x^{2} + 3ax + k = 0 \\ \\

Given :

\dashrightarrow\:\:\bf x = (- a) \\ \\

Plugging in the value of ' x ' in the above equation :-

\dashrightarrow\:\:\sf (- a)^{2} + 3a(- a) + k = 0\\ \\

\dashrightarrow\:\:\sf a^{2} - 3a^{2} + k = 0\\ \\

\dashrightarrow\:\:\sf - 2a^{2} + k = 0 \\ \\

\dashrightarrow\:\:\sf k = 2a^{2}\\ \\

{\boxed{\bf {The \: value \: of \: k = {\purple{2a^{2}}}}}} \\ \\

__________________

Not sure about the answer?

Let's verify it :

For verification, we will simply plug in the value of the k in the equation, if it will satisfy and make the whole equation zero then it is correct answer.

1) \longrightarrow\:\:\sf 1 + 6k = 0 \\ \\

Putting x = \sf \dfrac{-1}{6}

\rightarrow\:\:\sf 1 + 6 {\blue{\bigg(\dfrac{-1}{6}\bigg)}} = 0 \\ \\

\rightarrow\:\:\sf 1 + {\dfrac{-6}{6}} = 0 \\ \\

Taking L.C.M

\rightarrow\:\:\sf  {\dfrac{6 -6}{6}} = 0 \\ \\

\rightarrow\:\:\sf  {\dfrac{0}{6}} = 0 \\ \\

\rightarrow\:\:\sf 0 = 0 \\ \\

{\underline{\bf{L. H. S = R. H. S}}} \\

\dag \: \: {\large {\sf{ Verified } \: \: \dag}}   \\

___________________

\longrightarrow\:\:\sf \: 2) \: - ab + k = 0 \\ \\

Putting k = ab

\rightarrow\:\:\sf - ab + {\blue{(ab)}} = 0 \\ \\

\rightarrow\:\:\sf - {\not ab} + {\not{ab}} = 0 \\ \\

\rightarrow\:\:\sf 0 = 0 \\ \\

{\underline{\bf{L. H. S = R. H. S}}} \\

\dag \: \: {\large {\sf{ Verified } \: \: \dag}}   \\

___________________

\longrightarrow\:\:\sf \: 3) \: 2k - 2 = 0 \\ \\

Putting K = 1

\rightarrow\:\:\sf 2{\blue{(1)}} - 2 = 0 \\ \\

\rightarrow\:\:\sf 2 - 2 = 0 \\ \\

\rightarrow\:\:\sf 0 = 0 \\ \\

{\underline{\bf{L. H. S = R. H. S}}} \\

\dag \: \: {\large {\sf{ Verified } \: \: \dag}}   \\

____________________

\longrightarrow\:\:\sf \: 4) \: - 2a^{2} + k = 0 \\ \\

Putting \sf k = 2a^{2}

\rightarrow\:\:\sf - 2a^{2} + {\blue{(2a)^{2}}} = 0 \\ \\

\rightarrow\:\:\sf 0 = 0 \\ \\

{\underline{\bf{L. H. S = R. H. S}}} \\

\dag \: \: {\large {\sf{ Verified } \: \: \dag}}   \\

____________________

Answered by Anonymous
305

SOLUTION :-

\:

\small\mathtt\red{(I)}\textbf{Given\:that:-}

\:\:

\sf :\implies x\:=\:\bf\dfrac{2}{3}\:\:\:\:is \:a\:root\:of\:the\: equation

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\: x\:=\:\bf\dfrac{2}{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\sf |satisfies\:the\:Eqn|

\:\:

\sf \:\:\:\:\:\:\:\dashrightarrow i.e.\:\:7\bigg(\bf\dfrac{2}{3}\bigg)^2\:+\:k\bigg(\bf\dfrac{2}{3}\bigg)\:-\:3=0

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mapsto\:7×\bf\dfrac{4}{9}\:+\:2\bf\dfrac{k}{3}\:-\:3=0

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\:2\bf\dfrac{k}{3}\:=\:3-\bf\dfrac{28}{9}

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\:2 \bf\dfrac{k}{3}\:=\:  \bf\dfrac{27-28}{9}

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\:2 \dfrac{k}{ \not{3}} = -\bf \dfrac{1}{\cancel{9}^{ \: \: 3} } \\ \\

\:\:

 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{k=\frak{\green{- \bf\dfrac{1}{6}}}}}}

\:\:\:\:\:\:\:\:\:\:____________________

\:\:

\small\mathtt\red{(ii)}\textbf{Given\:that:-}

\:

\sf :\implies \bf x=a\:\:\:\:is\:a\:root\:of\:the\:given\: eqn.

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:x²-x(a+b)+k\:=\:0

\:\:

.\sf \:\:\:\:\:\:\:\:\:\:\:\:\dashrightarrow\: x\:=\:a\:\:\:\:\:\:\:\:\:\:|satisfies\:the\:Eqn|

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\mapsto\: i.e.\:(a)²\:-\:a(a+b)+=0

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\leadsto\: \:(a)²\:-\:a²\:-\:ab\:+\:=0

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\:-ab\:+\:k=0

\:\:

 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{k=\frak{\orange{ab}}}}}

\:\:\:\:\:\:\:\:\:\:____________________

\:\:

\small\mathtt\red{(iii)}\textbf{Given\:that:-}

\:

\sf :\implies\:x=\bf\sf \displaystyle\sqrt{2}\bf\:is\:a\:root\:of\:the\:given\: eqn.

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:kx²+\bf\sf \displaystyle\sqrt{2}x\:-\:4\:=\:0

\:\:

.\sf \:\:\:\:\:\:\:\:\:\:\:\:\dashrightarrow\: x\:=\:\bf\sf \displaystyle\sqrt{2}\:\:\:\:\:\:\:|satisfies\:the\:Eqn|

\:\:

\sf \:\:\:\:\:\:\:\:\:\mapsto\: i.e.\:\:k(a\bf\sf \displaystyle\sqrt{2})²\:+\:\bf\sf \displaystyle\sqrt{2} (\bf\sf \displaystyle\sqrt{2})-4\:=0

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mapsto \:2k\:+\:2\:-\:4\:=0

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \leadsto\:2k\:=\:2

\:\:

 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{k=\frak{\pink{1}}}}}

\:\:\:\:\:\:\:\:\:\:____________________

\:\:

\small\mathtt\red{(iv)}\textbf{Here,\:we\: have}

\:

\sf :\implies x\:=\:-0\:is\:a\:root\:of\:the\:given\: equation

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:x³+\:3ax\:+\:k\:=\:0

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\dashrightarrow\: x\:=\:-a\:\:\:\:\:\:\:|satisfies\:the\:Eqn|

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\leadsto\: i.e.\:\:(-a)²\:+\:3a(-a)\:+\:k\:=\:0

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\: -2a²\:+\:k\:=\:0

\:\:

 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{k=\frak{\gray{2a²}}}}}

Similar questions