Math, asked by Daksh22082005, 5 months ago

find the value of k such that the quadratic polynomial (k - 12)x2 -2(k - 12)x + 2 has equal roots

Answers

Answered by Cynefin
13

Required Answer:-

When a quadratic equation have equal roots, the discriminate (D) = 0. Here, Discriminate represents b² - 4ac for a quadratic equation of the form ax² + bx + c.

Comparing with ax² + bx + c:

  • a = k - 12
  • b = -2(k - 12)
  • c = 2

Plugging in the approached equation:

➙ b² - 4ac = 0 (\because equal roots)

➙ {-2(k - 12)}² - 4(k - 12)2 = 0

➙ 4(k - 12)² - 8(k - 12) = 0

➙ 4(k - 12){k - 12 - 2} = 0

(Here I have taken 4(k - 12) as common for easier calculation)

➙ 4(k - 12)(k - 14) = 0

➙ (k - 12)(k - 14) = 0

Equating to 0,

➙ k = 12,14

Hence:-

The required values of k are 12 or 14.

Answered by BrainlyEmpire
514

\large\underline{\red{\sf \orange{\bigstar} Correct\;Quesyion}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • find the value of k such that the quadratic polynomial (k - 12)x2 -2(k - 12)x + 2 has equal roots

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\green{\sf \blue{\bigstar} Solution}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Comparing with ax² + bx + c:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • a = k - 12

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • b = -2(k - 12)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • c = 2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink{\sf{\star\;☯\; Plugging\; in\; the \;approached\; equation:}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➙ b² - 4ac = 0 (\because equal roots)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➙ {-2(k - 12)}² - 4(k - 12)2 = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➙ 4(k - 12)² - 8(k - 12) = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➙ 4(k - 12){k - 12 - 2} = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➙ 4(k - 12)(k - 14) = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➙ (k - 12)(k - 14) = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\purple{\sf{\star\;☯\; Equating\; to\; 0,}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ➙ k = 12,14

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\red{\sf{\star\;☯\; The\; required \;values \;of\; k \;are\; 12\; or \;14.}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Similar questions