Math, asked by vidyanshusinghrajput, 1 day ago

find the value of k
1  \div  1 +\sin \theta \:  +  \: 1 \div 1 -  \sin \theta \:  = k \sec^{2} \theta

Answers

Answered by rishabjain0897
0

Answer:

k = 2

Step-by-step explanation:

 \frac{1}{1 +  \sin(  \theta) }  +  \frac{1}{1 -  \sin( \theta) }  =  \frac{1 -  \sin(\theta) + 1 +  \sin(\theta)  }{(1 +  \sin(  \theta))(1 -  \sin(\theta)) }

 =  \frac{2}{1 -  { \sin( \theta) }^{2} }

because (a+b)(a-b) = a^2 - b^2

now,

1 -   { \sin( \theta) }^{2}  =  { \cos( \theta) }^{2}

therefore expression equals to 2/cos(theta)^2

and

 \frac{1}{  { \cos( \theta) }^{2}  }  =   { \sec( \theta) }^{2}

hence expression equals

2 { \sec( \theta) }^{2}

therefore, k = 2

Similar questions