Math, asked by DiaDinesh, 1 month ago

Find the value of k:
( \frac{2}{3}) ^{3}  \times ( \frac{2}{3} ) ^{6}  = ( \frac{4}{9} ) ^{2k - 3}

Answers

Answered by 12thpáìn
8

Question

Find the value of k:

  • { \sf\left ( \dfrac{2}{3}\right ) ^{3} \times \left ( \dfrac{2}{3}\right  ) ^{6} =\left  ( \dfrac{4}{9}\right  ) ^{2k - 3} }

Step by step Explanation :

{  \:  \:  \:  \:  : \implies \sf\left ( \dfrac{2}{3}\right ) ^{3} \times \left ( \dfrac{2}{3}\right  ) ^{6} =\left  ( \dfrac{4}{9}\right  ) ^{2k - 3} }

{  \:  \:  \:  \:  : \implies \sf\left ( \dfrac{2}{3}\right ) ^{3} \times \left ( \dfrac{2}{3}\right  ) ^{6} =\left  ( \dfrac{ {2}^{2} }{ {3}^{2} }\right  ) ^{2k - 3} }

{  \:  \:  \:  \:  : \implies \sf\left ( \dfrac{2}{3}\right ) ^{3} \times \left ( \dfrac{2}{3}\right  ) ^{6} =\left  ( \dfrac{ {2}^{} }{ {3}^{} }\right  ) ^{2(2k - 3)} }

  • Bases are same power Should be Equal.

{  \:  \:  \:  \:  : \implies  \sf \: 3 + 6 = 2(2k - 3) }

{  \:  \:  \:  \:  : \implies  \sf \: 3   + 6= 4k  - 6}

{  \:  \:  \:  \:  : \implies  \sf \: 4k   =  6 + 3 + 6}

{  \:  \:  \:  \:  : \implies  \sf \: 4k   =  15}

{  \:  \:  \:  \:  : \implies  \bf \: k   =   \dfrac{15}{4} }\\\\

Verification

{ \:  \:  \:  \:  \mapsto \tiny \sf\left ( \dfrac{2}{3}\right ) ^{3} \times \left ( \dfrac{2}{3}\right  ) ^{6} =\left  ( \dfrac{4}{9}\right  ) ^{2k - 3} }

  • Put k = 15/4

{ \:  \:  \:  \:  \mapsto \tiny \sf\left ( \dfrac{8}{27}\right )  \times \left ( \dfrac{64}{729}\right  )=\left  ( \dfrac{4}{9}\right  ) ^{(2 \times  \frac{15}{4}  )- 3} }

{ \:  \:  \:  \:  \mapsto \tiny \sf \dfrac{512}{19683}=\left  ( \dfrac{4}{9}\right  ) ^{  \frac{19}{2}  } }

{ \:  \:  \:  \:  \mapsto \tiny \sf \dfrac{512}{19683}= \sqrt{ \left    (   \dfrac{4}{9}\right  )} ^{9} }

{ \:  \:  \:  \:  \mapsto \tiny \sf \dfrac{512}{19683}=\left    (   \dfrac{2}{3}\right  ) ^{9} }

{ \:  \:  \:  \:  \mapsto \tiny \sf \dfrac{512}{19683}=\dfrac{512}{19683}}

Similar questions