Math, asked by dishita2552, 10 months ago

find the value of kfor which the points are collinear.(7,-2)( 5,1)(3,k)​

Answers

Answered by amansharma264
1

 \large \green{ \underline{answer}} \\  \\ \large \implies{k \:  =  \: 4} \\  \\ \large  \implies \orange{ \underline{ \underline{step \: . \: by \: . \: step \: . \: explanation}}} \\  \\ \large \implies{let \: X1 = 7 \:  \: X2 = 5 \:  \: X3 = 3} \\  \\ \large \implies{let \: Y1 =  - 2 \:  \: Y2 = 1 \:  \: Y3 = k} \\  \\ \large \implies{if \:  \: point \:  \: are \:  \: collinear \:} \\  \\ \large \implies{ area \:  \: of \:   \triangle \: abc \:  = 0} \\  \\ \large \implies{ \frac{1}{2} (x1(y2 - y3) + x2(y3 - y1) + x3(y1  - y2)) = 0} \\  \\ \large \implies{ \frac{1}{2} (7(1 - k) + 5(k + 2) + 3( - 2 - 1) = 0} \\  \\ \large \implies{7 - 7k + 5k + 10 - 9 = 0} \\  \\ \large \implies{ - 7k + 5k =  - 10 + 9 - 7} \\  \\ \large \implies{ - 2k =  - 8} \\  \\ \large \implies \orange{ \boxed{k = 4}}

Similar questions