Math, asked by chandan502, 1 year ago

find the value of lim x--> 0 ( cosec x -cot x).

Answers

Answered by abhi178
9
\bold{\lim_{x \to \ 0} {cosecx -cotx}}
First of all check which form of limit exist here,
put x = 0
cosec0 - cot0 = ∞ - ∞ , this is the form of limit
So firstly , we have to resolve the expression.
= \bold{\lim_{x \to \ 0} {\frac{1}{sinx}-\frac{cosx}{sinx}}}
= \bold{\lim_{x \to \ 0} {\frac{1 - cosx}{sinx}}}
We know, sin2Ф = 2sinФ.cosФ
And 1 - cosA = 2sin²A/2, use these here,
= \bold{\lim_{x \to \ 0} {\frac{2sin^2(x/2)}{2sin(x/2)cos(x/2)}}}
= \bold{\lim_{x \to \ 0} {\frac{sin(x/2)}{cos(x/2)}}}
= \bold{\lim_{x \to \ 0} {tanx/2}}}
Now, put x = 0
= Tan(0/2) = 0

Hence, answer is 0
Answered by rohitkumargupta
8
HELLO DEAR,

 \lim_{x \to 0} (cosecx - cot x)<br /><br />\lim_{x \to 0} \frac{1}{sinx} - \frac{cosx}{sinx} <br /><br />\lim_{x \to 0} [\frac{(1 - cosx)}{sinx} ]
∴ [ (1 - cosx) = (2sin²x/2)]

 \lim_{x \to 0} \frac{2 sin^{2}x }{2sin \frac{x}{2} *cos \frac{x}{2} }
∴ [ sin2x = 2sinxcosx , sinx = 2sinx/2 × cosx/2 ]

 \lim_{x \to 0} \frac{2sin \frac{x}{2} }{cos \frac{x}{2} } <br /><br />\lim_{x \to 0} 2* \tan \frac{x}{2}<br /><br />Put x =0<br /><br />we get,<br /><br />2*tan0/2 = 0


I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions