Math, asked by dadsdoll2008, 10 months ago

Find the value of log(16807) to the base 49 - log(27) to the base 9

Answers

Answered by roughuse7111
4

Step-by-step explanation:

Exp. = log4916807 - log927

= log72 75 - log32 33

=(5/2)log77 - (3/2)log33

=5/2 - 3/2

= 1

Answered by pulakmath007
0

\displaystyle \sf{  log_{49}(16807)  -  log_{9}(27)  } = 1

Given :

\displaystyle \sf{  log_{49}(16807)  -  log_{9}(27)  }

To find :

The value of the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  log_{49}(16807)  -  log_{9}(27)  }

Step 2 of 2 :

Find the value of the expression

\displaystyle \sf{  log_{49}(16807)  -  log_{9}(27)  }

\displaystyle \sf{   =  \frac{log \: 16807}{log \: 49}  -  \frac{log \: 27}{log \: 9} }

\displaystyle \sf{   =  \frac{log \:  {7}^{5} }{log \:  {7}^{2} }  -  \frac{log \:  {3}^{3} }{log \:  {3}^{2} } }

\displaystyle \sf{   =  \frac{5 \: log \: 7}{2 \: log \: 7}  -  \frac{3 \: log \: 3}{2 \: log \: 3} }

\displaystyle \sf{   =  \frac{5 }{2 }  -  \frac{3 }{2 } }

\displaystyle \sf{   =  \frac{5 - 3 }{2 }  }

\displaystyle \sf{   =  \frac{2 }{2 }  }

\displaystyle \sf{   =  1  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

Similar questions