Math, asked by mahima23, 1 year ago

find the value of log 256 to the base√2

Answers

Answered by siddhartharao77
123
Let log root 2(256) = x

         (root 2)^x = 256

         (root 2)^x = 2^8

         (root 2)^x = (root 2)^16

             x = 16.


Hope this helps!
Answered by pinquancaro
89

Answer:

\log_{\sqrt2}(256)=16

Step-by-step explanation:

Given : Expression \log_{\sqrt2}(256)

To find : The value of the expression?

Solution :

Let x=\log_{\sqrt2}(256)

Applying trigonometric properties, \log_a b=x\Rightarrow b^x=a

Here, a=\sqrt{2} , b=256

(\sqrt 2)^x=256

Now we solve for x,

(\sqrt 2)^x=2^8

(\sqrt 2)^x=(\sqrt2)^{16}

On comparing the base,

x=16

Therefore, \log_{\sqrt2}(256)=16

Similar questions