Math, asked by adityaayushi2712, 4 days ago

Find the value of log√3 (3√3) - log5 (0.04). ​

Answers

Answered by jitendra12iitg
9

Answer:

The answer is 5

Step-by-step explanation:

   \log_{\sqrt 3}(3\sqrt 3)-\log_5(0.04)

 =\log_{\sqrt 3}((\sqrt 3)^2\sqrt 3)-\log_5(\frac{4}{100})\\\\=\log_{\sqrt 3}(\sqrt 3)^ {2+1}-\log_5(\frac{1}{25})\\\\=\log_{\sqrt 3}(\sqrt 3)^ {3}-\log_5(\frac{1}{5^2})\\\\=\log_{\sqrt 3}(\sqrt 3)^ {3}-\log_5(5^{-2})\\\\=3\log_{\sqrt 3}(\sqrt 3)-(-2)\log_5(5)

       \boxed{\because \log_ab^n=n\log_ab }

  =3(1)+2(1)=5

      \boxed{\because \log_aa=1}

Similar questions