Math, asked by soumya3024, 1 year ago

Find the value of log√[5√{5√(5...infinite)}]/log5​

Answers

Answered by Anonymous
8

Answer:

1

Step-by-step explanation:

x = log√[5√{5√(5...)}] / log5​

=> x = log₅√[5√{5√(5...)}]

=> 5ˣ = √[5√{5√(5...)}]

=> 5²ˣ = 5√[5√{5√(5...)}]

=> 5²ˣ⁻¹ = √[5√{5√(5...)}]

=> 5²ˣ⁻¹ = 5ˣ

=> 2x - 1 = x

=> x = 1

Answered by dikshaagarwal4442
0

Answer:

The value of log√[5√{5√(5...infinite)}]/log5​ = 1

Step-by-step explanation:

Suppose, x = log√[5√{5√(5...infinite)}]/log5​.........(1)

  • Step - 1: From the formula of logarithm we know  \frac{\log_{10}x}{\log_{10}a} = \log_{a} x

                      So, \frac{\log_{10} \sqrt{5\sqrt{5\sqrt{5}.....infinite} } }{\log_{10}5} = {\log_{5} \sqrt{5\sqrt{5\sqrt{5}.....infinite} } }

  • Step - 2:  From equation (1), we can write,

                        x = {\log_{5} \sqrt{5\sqrt{5\sqrt{5}.....infinite} } }.............(2)

  • Step - 3: From the formula of logarithm, if y = \log_{a} x

                                                                      then, a^y = x

    Applying this formula in equation (2) we get,

                  5^x = {\sqrt{5\sqrt{5\sqrt{5}.....infinite} } }...................(3)

        [ taking square on both sides]

                 5^(2x) = 5 {\sqrt{5\sqrt{5\sqrt{5}.....infinite} } } ...............(4)

  • Step - 4: Comparing (3) and (4), we get,

                                5^(2x) = 5 ×  5^x

                                \frac{5^2x}{5^x} = 5

                                5^(2x-x) = 5

                                 5^x = 5 = 5^1

                            ∴ x = 1

  • Conclusion: From equation (1) as x = log√[5√{5√(5...infinite)}]/log5

                                   and finally we get x = 1

    So we can say, log√[5√{5√(5...infinite)}]/log5 = 1

               

Similar questions