Math, asked by shireenbanu663, 11 months ago

find the value of log base root 3 243​

Answers

Answered by harendrachoubay
4

The value of \log _{\sqrt{3}} 243=10.

Step-by-step explanation:

We have,

\log _{\sqrt{3}} 243

To find, the value of\log _{\sqrt{3}} 243=?

\log _{\sqrt{3}} 243

=\log _{\sqrt{3}} 3^5

[ ∵ 243 = 3 × 3 × 3 × 3 × 3]

=\log _{\sqrt{3}} (\sqrt{3}\times \sqrt{3})^5

=\log _{\sqrt{3}}(\sqrt{3}^2)^5

=\log _{\sqrt{3}}\sqrt{3}}^{2\times 5}

[ ∵ a^{m} \times a^{n} =a^{m+n}]

=\log _{\sqrt{3}}\sqrt{3}}^{10}

=10\log _{\sqrt{3}}\sqrt{3}}

[ ∵ \log a^m=m\log a]

=10\times 1

[ ∵\log_aa=1]

= 10

Hence, the value of \log _{\sqrt{3}} 243=10.

Similar questions