Math, asked by mdtalib05, 1 year ago

find the value of log root2 power8​

Answers

Answered by sahildhande987
125

\huge\star{\tt{\underline{\underline{\red{Answer\implies 6}}}}}\star

log_{\sqrt2}^{8}

\implies \large{\log_{2^\frac{1}{2}}^{2^{3}}}

\implies \large{\frac{3}{\frac{1}{2}}log_{2}^{2}}

\implies 6log_{2}^{2}

\implies \large{\boxed{\boxed{6}}}

Answered by kaushik05
11

 \huge \mathfrak{solution}

To find

  log_{ \sqrt{2} }(8)  \\  =  >  log_{ {2}^{ \frac{1}{2} } }( {2}^{3} )  \\  =  >  \frac{3}{ \frac{1}{2} }  log_{2}(2)  \\     =  >  \frac{3}{ \frac{1}{2} }  \times 1 \\  =  > 3 \times 2 \\  =  > 6

Formula used : \boxed{ log_{a}(a)  = 1}

 \boxed{ log_{ {a}^{x} }( {b}^{y} )  } \:  \\  =  >  \frac{y}{x}  log_{a}(b)

Similar questions