Math, asked by karkarthik03, 1 year ago

Find the value of log to the base 4/3 256/81

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{log\,_{\frac{4}{3}}\left(\dfrac{256}{81}\right)}

\underline{\textbf{To find:}}

\textsf{The value of}\;\mathsf{log\,_{\frac{4}{3}}\left(\dfrac{256}{81}\right)}

\underline{\textbf{Solution:}}

\mathsf{Let\;\;x=log\,_{\frac{4}{3}}\left(\dfrac{256}{81}\right)}

\textsf{This can be written as}

\mathsf{\left(\dfrac{4}{3}\right)^x=\dfrac{256}{81}}

\mathsf{\left(\dfrac{4}{3}\right)^x=\dfrac{4^4}{3^4}}

\mathsf{\left(\dfrac{4}{3}\right)^x=\left(\dfrac{4}{3}\right)^4}

\textsf{Equating powers on bothsides, we get}

\mathsf{x=4}

\implies\boxed{\bf\;log\,_{\frac{4}{3}}\left(\dfrac{256}{81}\right)=4}

Similar questions