Math, asked by munawer40, 11 months ago

find the value of log8/root2​

Answers

Answered by pinquancaro
2

Answer:

\log (\frac{8}{\sqrt2})=0.752  

Step-by-step explanation:

Given : Expression \log (\frac{8}{\sqrt2})

To find : Evaluate the expression ?

Solution :

We know, \log(\frac{x}{y} )=\log x-\log y

Applying in given expression,

\log (\frac{8}{\sqrt2})=\log 8-\log \sqrt2

\log (\frac{8}{\sqrt2})=\log 2^3-\log 2^{\frac{1}{2}}

Applying logarithmic property, \log a^x=x\log a

\log (\frac{8}{\sqrt2})=3\log 2-\frac{1}{2}\log 2

\log (\frac{8}{\sqrt2})=(3-\frac{1}{2})\log 2

\log (\frac{8}{\sqrt2})=\frac{5}{2}\log 2

Using log table,

\log (\frac{8}{\sqrt2})=\frac{5}{2}\times 0.301

\log (\frac{8}{\sqrt2})=0.752

Answered by ColinJacobus
0

Answer:  The required value of the given expression is 0.64.

Step-by-step explanation: We are given to find the value of the following logarithmic expression :

E=\dfrac{\log8}{\sqrt2}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)

We will be using the following property of logarithms :

\log a^b=b\log a.

From expression (i), we get

E\\\\=\dfrac{\log 8}{\sqrt2}\\\\\\=\dfrac{\log2^3}{\sqrt2}\\\\\\=\dfrac{3\log 2}{\sqrt2}\\\\\\=\dfrac{3\times .30103}{1.414}\\\\\\=\dfrac{0.90309}{10.414}\\\\=0.6387\\\\\sim 0.64.

Thus, the required value of the given expression is 0.64.

Similar questions