Math, asked by bvmhssjayasuryan, 9 months ago

Find the value of logy(x4) if logx(y3) = 2​

Answers

Answered by percythomas00
4

Answer: 6

Step-by-step explanation:

log(a^x) = 1/log(x^a) ---------------------1

 

log x(y^3)=3logx^y=2    ---------------------2

implies        log x^y=2/3   ------------------3

log y^x4=4logy^x    -----------------------4

log y^x=1/log x^y

4 log y^x = 4/log x^y

               =4/(2/3)

               

                =4*3/2

               

                 =6

hope this helps !

 

Answered by sourasghotekar123
0

Answer:

㏒(y)(x^{4})=8-(11)㏒(y)

Step-by-step explanation:

consider

          ㏒ x(y^{3})=2

from identity

          ㏒(ab)=㏒(a)+㏒(b)

          ㏒xy^{3}\\=㏒(a)+㏒(y^{3})

we know that

          ㏒y^{3}=(3)㏒(y)

          ㏒xy^{3}=㏒(x)+(3)㏒(y)=2

          ㏒(x)=2-3㏒(y)

          ㏒(y)(x^{4})=㏒(y)+4㏒(x)

           ㏒(y)(x^{4})= ㏒(y)+4(2-(3)㏒(y))

           ㏒(y)(x^{4})= ㏒(y)+8-(12)㏒(y)

           ㏒(y)(x^{4})=8-(11)㏒(y)

The project code is #SPJ2

Similar questions