Find the value of logy(x4) if logx(y3) = 2
Answers
Answer: 6
Step-by-step explanation:
log(a^x) = 1/log(x^a) ---------------------1
log x(y^3)=3logx^y=2 ---------------------2
implies log x^y=2/3 ------------------3
log y^x4=4logy^x -----------------------4
log y^x=1/log x^y
4 log y^x = 4/log x^y
=4/(2/3)
=4*3/2
=6
hope this helps !
Answer:
㏒(y)()=8-(11)㏒(y)
Step-by-step explanation:
consider
㏒ x()=2
from identity
㏒(ab)=㏒(a)+㏒(b)
㏒x=㏒(a)+㏒()
we know that
㏒=(3)㏒(y)
㏒x=㏒(x)+(3)㏒(y)=2
㏒(x)=2-3㏒(y)
㏒(y)()=㏒(y)+4㏒(x)
㏒(y)()= ㏒(y)+4(2-(3)㏒(y))
㏒(y)()= ㏒(y)+8-(12)㏒(y)
㏒(y)()=8-(11)㏒(y)
The project code is #SPJ2