Math, asked by shobha1211983, 1 year ago

find the value of m​

Attachments:

Answers

Answered by Anonymous
10

Answer :-

Value of m is (D) 1.

Explanation :-

 \mathsf{( m^3 + 2^3 + 3^3) ^{  - \dfrac{5}{2} }   = (6)^{ - 5} } \\  \\

 \mathsf{ \implies ( m^3 + 8 + 27) ^{  - \dfrac{5}{2} }   = (6)^{ - 5} } \\  \\

 \mathsf{ \implies ( m^3 + 35) ^{  - \dfrac{5}{2} }   = (6)^{ - 5} } \\  \\

Squaring on both sides

 \mathsf{ \implies ( m^3 + 35) ^{  - 5}   = (6^{ - 5} })^2  \\  \\

 \mathsf{ \implies ( m^3 + 35) ^{  - 5}   = 6^{ - 5(2)} }\\  \\

 \boxed{ \bf \because  ({a}^{m}) ^n =  {a}^{mn} } \\  \\

 \mathsf{ \implies ( m^3 + 35) ^{  - 5}   = 6^{ -10}}\\  \\

Raising to power 1/5 on both sides

 \mathsf{ \implies  \{( m^3 + 35) ^{  - 5} \}^{ \dfrac{1}{5} } = (6^{ -10} )^{ \dfrac{1}{5} } }\\  \\

 \mathsf{ \implies ( m^3 + 35) ^{  - 1} =  6^{ -2}  }\\  \\

 \mathsf{ \implies  \dfrac{1}{( m^3 + 35) ^1 }=   \dfrac{1}{6^2}  }\\  \\

 \boxed{ \bf \because  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} } } \\  \\

 \mathsf{ \implies  \dfrac{1}{ m^3 + 35 }=   \dfrac{1}{6^2}  }\\  \\

 \mathsf{ \implies m^3 + 35 =6^2 }\\  \\

 \mathsf{ \implies m^3 + 35 =36 }\\  \\

 \mathsf{ \implies m^3 =36 - 35 }\\  \\

 \mathsf{ \implies m^3 =1}\\  \\

 \mathsf{ \implies m = \sqrt[3]{1}  }\\  \\

 \mathsf{ \implies m =1 }\\  \\

the value of m is (D) 1.

Similar questions