Math, asked by simranraj9650, 8 months ago

find the value of m​

Attachments:

Answers

Answered by Anonymous
12

Answer :-

 \boxed{\large  \bf\underline{ \red{ m   = 9}}}

GIVEN :-

  \sf {( - 3)}^{m + 1}  \times  {( - 3)}^{ - 3}   =  {( - 3)}^{7}

TO FIND :-

 : \implies  \sf{\: value \: of \: m}

SOLUTION :-

 \bf {( - 3)}^{m + 1}  \times  {( - 3)}^{ - 3}   =  {( - 3)}^{7}

  \bf {( a)}^{m}  \times  {(b )}^{n }   =  {( a)}^{m + n}

In this Question :-

 \sf \: a = ( -3 )

 \sf \: m  = m + 1

 \sf n  =  - 3

PUTTING VALUES :-

 

  \bf {( - 3)}^{(m + 1)   +  (- 3)}   =  {( - 3)}^{7}

  \bf {( - 3)}^{m + 1 - 3}   =  {( - 3)}^{7}

  \bf {( - 3)}^{m  - 2}   =  {( - 3)}^{7}

  \bf {( - 3)}^{m }  =  {( - 3)}^{7 + 2}

  \sf {( - 3)}^{m}  =  {( - 3)}^{9}

 \boxed{ \therefore \bf \red{ m   = 9}}

VERIFIACTION :-

\boxed{\sf LHS = RHS}

\implies \sf {( - 3)}^{m + 1}  \times  {( - 3)}^{ - 3}   =  {( - 3)}^{7}

\implies\sf  {( - 3)}^{9 + 1}  \times  {( - 3)}^{ - 3}   =  {( - 3)}^{7}

\implies  \sf {( - 3)}^{10}  \times  {( - 3)}^{ - 3}   =  {( - 3)}^{7}

\implies \sf {( - 3)}^{10 - 3}   =  {( - 3)}^{7}

\implies \boxed{\sf\large\red{ {( - 3)}^{7}   =  {( - 3)}^{7} }}

\bf \therefore hence \:proved \:\boxed{\sf L.H.S= R.H.S}

More exponential identity :-

 \bf 1.\:{a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

  \bf2.\: \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \bf 3.\:{a}^{0}  = 1

 \bf 4.\:{  ({a}^{m}) }^{n}  =   {a}^{mn}

Similar questions