Math, asked by KIRANKIRRU7764, 10 months ago

Find the value of m 9m÷3 to the power -2 =9 to the power 4​

Answers

Answered by Anonymous
6

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given an algebric Equation
  • \sf{{\dfrac{9m}{3}}^{-2} = 9^4}

To Find:

  • We have to find the value of m

Solution:

\underline{\large\mathfrak\red{We \: have \: been \: given \: that}}

\hookrightarrow \sf{{\dfrac{9m}{3}}^{-2}=9^4 }

\hookrightarrow \sf{{3m}^{-2}=9^4 }

Using law of exponents

\boxed{\sf{\orange{{\dfrac{1}{a}}^m = a^{-m}}}}

\hookrightarrow \sf{{\left ( \dfrac{1}{3m} \right ) }^{2}=9^4 }

\hookrightarrow \sf{\dfrac{1}{9m^2}=9^4 }

Cross Multiplying the terms

\hookrightarrow \sf{\dfrac{1}{m^2}=9^4 \times 9}

\hookrightarrow \sf{\dfrac{1}{m^2}=9^5 }

Reciprocaling Both sides

\hookrightarrow \sf{m^2 = {\left ( \dfrac{1}{9} \right ) }^5}

\hookrightarrow \sf{m^2 = {\left ( \dfrac{1}{3^2} \right ) }^5}

\hookrightarrow \sf{m^2 = {\left ( \dfrac{1}{3^5} \right ) }^2}

Comparing Bases on Both sides

\hookrightarrow \sf{m = \dfrac{1}{3^5}}

\hookrightarrow \boxed{\sf{m = \dfrac{1}{243}}}

_________________________________

\huge\sf{\red{A}\orange{n}\green{s}\pink{w}\blue{e}\purple{r}}

\large \boxed{\sf{\purple {Value \: of \: m = \dfrac{1}{243}}}}

_________________________________

\huge\mathfrak\green{Verification:}

Taking LHS

\implies \sf{{\dfrac{9m}{3}}^{-2}}

\implies \sf{(3m)^{-2}}

Putting m = 1/243

\implies \sf{(3m)^{-2}}

\implies \sf{{\left ( 3 \times \dfrac{1}{243} \right ) }^{-2}}

\implies \sf{{\dfrac{1}{81}}^{-2}}

Using : \implies \boxed{\sf{\orange{{\dfrac{1}{a}}^m = a^{-m}}}}

\implies \sf{81^2}

\implies \sf{(9^2)^2}

\implies \sf{9^4 = RHS}

Hence Verified !

Similar questions