Math, asked by xcharbhai, 11 months ago

Find the value of m and n: if: (5+2√3)/(7-4√3) = m + n√3

Answers

Answered by PegasusPurpose
8

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \huge\mathcal{\bf{\underline{\underline{\huge\mathcal{Answer}}}}}

\large\mathcal\red{solution}

 \frac{5 + 2 \sqrt{3} }{7 - 4 \sqrt{3} }  = m + n \sqrt{3}  \\  =  >  \frac{ (5 + 2 \sqrt{3}  )(7 + 4 \sqrt{3} )}{(7 - 4 \sqrt{3})(7 + 4 \sqrt{ 3} ) }  = m + n \sqrt{3} \\  =  >  \frac{5(7 + 4 \sqrt{3}) + 2 \sqrt{3} (7 + 4 \sqrt{3} ) }{7 {}^{2}  - (4 \sqrt{3} ) {}^{2} }  = m + n \sqrt{3} \\  =  >  \frac{35 + 20 \sqrt{3}  + 14 \sqrt{3}  + 24}{49 - 48}  =m + n \sqrt{3} \\  =  > 59 + 34 \sqrt{3}   = m + n \sqrt{3} \\  compairing \: both \: sides \:  \:  \\....... m = 59 \\  \\  ........n = 34

\large\mathcal\red{hope\: this \: helps \:you......}

Answered by SamixaChhetri
3

\mathfrak{\underline{\underline{Answer:}}}

  • m = 59
  • n = 34

\mathfrak{\underline{\underline{Explanation:}}}

Given:

 \rm \dfrac{5 + 2 \sqrt{3} }{7 - 4 \sqrt{3} }  = m + n \sqrt{3}

To find: Values of m and n

Solution:

LHS :  \rm \dfrac{5 + 2 \sqrt{3} }{7 - 4 \sqrt{3} }

Rationalise the denominator

 \implies \rm \dfrac{5 + 2 \sqrt{3} }{7 - 4 \sqrt{3} } \times  \dfrac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\    \implies\frac{(5 + 2 \sqrt{3} )(7 + 4 \sqrt{3} )}{ {7}^{2}  -  {(4 \sqrt{3} )}^{2} }  \\  \\  \implies \frac{{5(7 + 4 \sqrt{3} )} + 2 \sqrt{3}(7 + 4 \sqrt{3} )}{49 - 48} \\  \\  \implies{ \frac{35 + 20 \sqrt{3}  + 14 \sqrt{3} + 24 }{1} } \\  \\   \rm <strong>LHS</strong>= 59 + 34 \sqrt{3}

 \rm{<strong>RHS</strong> = m + n \sqrt{3} }

On comparing LHS and RHS we get,

m = 59

n = 34

Similar questions