Math, asked by lalbahadur1919, 5 months ago

Find the value of 'm' for which (7/12)^-4 x (12/7)^-3m = (7/12)^8

Those those will give me answer I will mark them brilliant​

Answers

Answered by parihouse6
0

Answer:

Step-by-step explanation:

(7/12)^-4 x (7/12)^3m = (7/12)^8

(7/12)^3m-4 = (7/12)^8

3m-4 = 8

3m = 8 + 4

3m = 12

m = 3

Answered by Anonymous
22

 \sf{( { \frac{7}{12} })^{ - 4}  \times(   { \frac{12}{7} })^{ - 3m}  =  ({ \frac{7}{12} })^{8} }

 \sf{ \to  \color{grey}\: since \: bases \: are \: same \: power\: gets \: added \: when \: multiplied}

 \sf{  \to  ({ \frac{7}{12} })^{ - 4} \times  ({ \frac{7}{12}})^{3m}  = ( { \frac{7}{12} })^{8}} \\ \\  \sf{ \to( { \frac{7}{12} })^ \color{aqua}{ - 4 + 3m} } =  ({ \frac{7}{12} })^ \color{blue}{8}

 \sf{ \to  \color{magenta}\: comapre \: the \: powers}

- 4+3m = 8

3m= 8+4

3m = 12

m= 12/3

m= 4

so the value of m is 4.

______________________

More information!!

 \sf{ \to \:  {x}^{m}  \times  { {y}^{m} }= {xy}^{m}  }

 \sf{ \to \:  {x}^{m}  \times  {x}^{n}  =  {x}^{m + n} }

 \sf { \to \:   {x}^{0}  = 1}

 \sf{ \to { \frac{ { x}^{m} }{ {x}^{n} } =  {x}^{m - n}  }}

 \sf{ \to \: ( {x {}^{n} )}^{m } } =  {x}^{m.n}

__________________________

Similar questions